BioContrasts: extracting and exploiting protein-protein contrastive relations from biomedical literature
نویسندگان
چکیده
MOTIVATION Contrasts are useful conceptual vehicles for learning processes and exploratory research of the unknown. For example, contrastive information between proteins can reveal what similarities, divergences and relations there are of the two proteins, leading to invaluable insights for better understanding about the proteins. Such contrastive information are found to be reported in the biomedical literature. However, there have been no reported attempts in current biomedical text mining work that systematically extract and present such useful contrastive information from the literature for exploitation. RESULTS Our BioContrasts system extracts protein-protein contrastive information from MEDLINE abstracts and presents the information to biologists in a web-application for exploitation. Contrastive information are identified in the text abstracts with contrastive negation patterns such as 'A but not B'. A total of 799 169 pairs of contrastive expressions were successfully extracted from 2.5 million MEDLINE abstracts. Using grounding of contrastive protein names to Swiss-Prot entries, we were able to produce 41 471 pieces of contrasts between Swiss-Prot protein entries. These contrastive pieces of information are then presented via a user-friendly interactive web portal that can be exploited for applications such as the refinement of biological pathways. AVAILABILITY BioContrasts can be accessed at http://biocontrasts.i2r.a-star.edu.sg. It is also mirrored at http://biocontrasts.biopathway.org. SUPPLEMENTARY INFORMATION Supplementary materials are available at Bioinformatics online.
منابع مشابه
Exploiting Shallow Linguistic Information for Relation Extraction from Biomedical Literature
We propose an approach for extracting relations between entities from biomedical literature based solely on shallow linguistic information. We use a combination of kernel functions to integrate two different information sources: (i) the whole sentence where the relation appears, and (ii) the local contexts around the interacting entities. We performed experiments on extracting gene and protein ...
متن کاملA robust approach to extract biomedical events from literature
MOTIVATION The abundance of biomedical literature has attracted significant interest in novel methods to automatically extract biomedical relations from the literature. Until recently, most research was focused on extracting binary relations such as protein-protein interactions and drug-disease relations. However, these binary relations cannot fully represent the original biomedical data. There...
متن کاملSemisupervised Learning Based Disease-Symptom and Symptom-Therapeutic Substance Relation Extraction from Biomedical Literature
With the rapid growth of biomedical literature, a large amount of knowledge about diseases, symptoms, and therapeutic substances hidden in the literature can be used for drug discovery and disease therapy. In this paper, we present a method of constructing two models for extracting the relations between the disease and symptom and symptom and therapeutic substance from biomedical texts, respect...
متن کاملBiomedical events extraction using the hidden vector state model
OBJECTIVE Biomedical events extraction concerns about events describing changes on the state of bio-molecules from literature. Comparing to the protein-protein interactions (PPIs) extraction task which often only involves the extraction of binary relations between two proteins, biomedical events extraction is much harder since it needs to deal with complex events consisting of embedded or hiera...
متن کاملExtraction of Drug-Drug Interaction from Literature through Detecting Linguistic-based Negation and Clause Dependency
Extracting biomedical relations such as drug-drug interaction (DDI) from text is an important task in biomedical NLP. Due to the large number of complex sentences in biomedical literature, researchers have employed some sentence simplification techniques to improve the performance of the relation extraction methods. However, due to difficulty of the task, there is no noteworthy improvement in t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 22 5 شماره
صفحات -
تاریخ انتشار 2006